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Abstract
We show that the density of complex eigenvalues for unitary invariant
ensembles of complex matrices A can be written as an integral over the
eigenvalues gj of AA†. For the standard random matrix ensembles with
matrix density of the form

∏
j w(gj ), this integral can be further reduced to a

twofold integral involving the Christoffel–Darboux kernel for the orthogonal
polynomials associated with weight w.

PACS numbers: 02.10Yn, 02.50.−r, 05.40.−a, 75.10.Nr

1. Introduction

Random matrices have found many interesting applications in physical sciences and beyond.
Motivated by applications, random matrix theory is concerned with studying statistical patterns
in the eigenvalue distribution. In this context it helps to know the joint probability density
function (jpdf) of eigenvalues. For the traditional random matrix ensembles the jpdf can be
calculated in a closed form [1, 2], and, consequently, one gets access to various eigenvalue
statistics such as the mean eigenvalue density, eigenvalue correlation functions or spacings
between eigenvalues.

Recently, random matrices with complex eigenvalues filling densely parts of the complex
plane have attracted considerable interest in the mathematical and theoretical physics literature.
Compared to random matrices with real eigenvalues where one can study the eigenvalue
distribution by moving off the real line and avoiding singularities, matrices with complex
eigenvalues present much more of a challenge as one has to deal with generating functions,
such as the resolvent, inside the domain of the eigenvalue distribution. Similarly, finding
the jpdf of complex eigenvalues in a closed form is generally a difficult task which has been
successfully accomplished for the Gaussian matrix ensembles [3–5] and a few ensembles
beyond [6, 7].
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One approach that has proved to be useful for studying eigenvalue distributions in the
complex plane is based on the so-called method of Hermitization [8–10], or equivalently on
the use of the logarithmic potential, see [11, 12]. In this approach one reduces the complex
eigenvalue problem to a one-parameter family of real eigenvalue problems and then uses the
standard techniques to deal with the latter. In this communication, building on the previous
work of two of us [13], we develop an alternative approach to Hermitization.

We consider the general class of invariant random matrix ensembles. Our matrices A

are complex N × N and the law of their distribution is invariant under the left and right
multiplication by the unitary matrices. Without loss of generality we may assume this law to
be of the form

dP(A) ∝ W(g1, . . . , gN) dA, 0 � a � gj � b � +∞ for all j, (1)

where the weight W is a continuous symmetric function in the eigenvalues gj of AA† and dA is
the Cartesian volume element in the space of complex matrices, dA = ∏

ij d Re Aij d Im Aij .
The complex Ginibre ensemble [3] belongs to this class with the weight function W =
e− Tr AA† = e− ∑

j gj as well as its extension W = e− Tr V (AA†) = e− ∑
j V (gj ) dA, introduced

by Feinberg and Zee [8]. Another example is provided by the Jacobi ensemble with
W = det(AA†)p det(I − AA†)q = ∏

j g
p

j (1 − gj )
q which appears naturally in the context of

truncations of random unitary matrices [14, 15].
It is apparent that the eigenvalues zj of A are not completely independent of the eigenvalues

gj of AA†. While it is rather difficult to give a precise deterministic description of the relation
between the two sets of eigenvalues, one can link the eigenvalues of AA† to those of A in the
stochastic setup. In the previous work [13] it was shown that the density of eigenvalues of A,

ρ(z) =
〈

1

N

N∑
j=1

δ(x − Re zj )δ(y − Im zj )

〉
, z = x + iy, (2)

is completely determined by those of AA† in the following sense. If the eigenvalues of AA†

are fixed, i.e. W(g1, . . . , gN) = ∏N
j=1 δ(gj − g̃j ) in (1), then ρ(x, y) can be expressed in

terms of the g̃j ’s in a closed form, see theorem 2.1. This means that in the ensemble (1)
with the general weight W one can obtain the density of eigenvalues by integrating over the
eigenvalues of AA†. The corresponding integration formula is one of the two results of this
communication, see theorem 2.2. The other one concerns the multiplicative weights,

W(g1, . . . , gN) =
N∏

j=1

w(gj ), (3)

which are pertinent to the Feinberg–Zee and Jacobi ensembles. We show that in this case the
density of eigenvalues of A can be obtained by integrating the Christoffel–Darboux kernel for
the orthogonal polynomials associated with the weight w, see theorem 2.3.

The communication is organized as follows. In section 2, we state our main results. The
details of proofs are given in section 3 and section 4 contains two examples.

2. Main results

In order to state our main results we need to recall a theorem from the previous work [13]. Let
z be a complex number and g = (g1, . . . , gN). Define functions Fi(g), i = 1, . . . , N , by

Fi(g) = (gi − |z|2)N−2

π

∫ ∞

0

N dt

(1 + t)N+2

[
(N − t) +

gi

|z|2 (Nt − 1)

] N∏
j=1,j �=i

1 + tgj

|z|2
gi − gj

. (4)

2
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For future reference we note the following important symmetries: for each i = 1, . . . , N

Fi(g) is invariant wrt any permutation of g1, . . . , gi−1, gi+1, . . . , gN (5)

and

FN(g)|gi↔gN
= Fi(g). (6)

Theorem 2.1 (Wei and Fyodorov [13]). Let G = diag(g1, . . . , gN) be a fixed positive
diagonal matrix, such that 0 < g1 < · · · < gN < ∞, N � 2 and U be a random unitary
matrix drawn from the circular unitary ensemble (the unitary group U(N) equipped with the
Haar measure). Then the density of eigenvalues of the matrices

√
GU averaged over the

distribution of U is given by

ρg(z) =
{

0 if |z|2 < g1 or |z|2 > gN

1
N

∑N
i=k+1 Fi(g) if gk < |z|2 < gk+1, k = 1, . . . , N − 1.

(7)

Note that equation (4) has an extra factor 1/π compared to the similar one in [13]. This is
due to a change in the normalization convention. In [13] the eigenvalue density was normalized
to

∫
ρ(z) d(|z|2) = 1 while in this communication we use the normalization

∫
ρ(z) dx dy = 1.

Now, consider the random matrix ensembles defined in (1). We recall that the eigenvalues
of A are confined to the region enclosed by two concentric circles |z|2 = minj gj and
|z|2 = maxj gj with the gj’s being the eigenvalues of AA†. Therefore, the eigenvalues of the
matrix A drawn at random from the matrix distribution (1) all lie in the region a � |z|2 � b,
where a and b are as defined in (1).

In this communication we show that theorem 2.1 implies

Theorem 2.2. The average density of the eigenvalues in the random matrix ensemble defined
by (1) is given by

ρ(z) = 1

QN

∫ b

a

dg1 · · ·
∫ b

a

dgN−1

∫ b

|z|2
dgN FN(g)W(g)

∏
1�i<j�N

(gj − gi)
2, a < |z|2 < b

(8)

with the normalization constant

QN =
∫ b

a

dg1 · · ·
∫ b

a

dgN W(g)
∏

1�i<j�N

(gj − gi)
2. (9)

We also show that for the multiplicative weights (3) the N-fold integral in (8) reduces to a
twofold integral as follows. Let pn(x) be the monic orthogonal polynomials associated with
the weight function w(x),∫ b

a

dx w(x)pn(x)pm(x) = hnδm,n, pn(x) = xn + · · · , (10)

and KN(x, y) be the corresponding Christoffel–Darboux kernel,

KN(x, y) =
N−1∑
n=0

pn(x)pn(y)

hn

= 1

hN−1

pN(x)pN−1(y) − pN−1(x)pN(y)

x − y
. (11)

It is well known, see e.g. [1, 2], that KN determines the density of the eigenvalues of AA†

averaged over the distribution of A,〈 N∑
j=1

Tr δ(x − AA†)

〉
A

= w(x)KN(x, x).

3
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As a simple corollary of theorem 2.2, we will show that the density of eigenvalues of A can
also be expressed in terms of the kernel KN.

Theorem 2.3. The average density of the eigenvalues in the random matrix ensemble defined
by (1), (3) is given by

ρ(z) = (−1)N−1|z|2
∫ b

|z|2
dx w(x)

∫ ∞

0
ds

(x − |z|2)N−2

(s + |z|2)N+2

×
[
N(x + s) −

(
xs

|z|2 + |z|2
)]

KN(x,−s), a < |z|2 < b. (12)

Equation (12) gives the average density of complex eigenvalues in a closed form in terms
of the orthogonal polynomials associated with the weight w(x) on the real interval (a, b).
Although it does not look simple, (12) provides an efficient way of calculating the density for
small matrix dimensions N, see example 2 in section 4. We also hope that it will be helpful
in the large-N limit. The complexity of the derived equation (12) can be traced down to the
determinantal formula for the eigenvalue density [16]

ρ(z) = − 1

π
lim
ε→0

∂

∂z̄
lim
zb→z

∂

∂zb

〈
det[ε2I + (zI − A)(zI − A)†]

det[ε2I + (zbI − A)(zbI − A)†]

〉
A

, (13)

which was the starting point of the calculations in [13]. In contrast to Hermitian matrices,
averages of ratios of the characteristic polynomials are rather complicated objects to study
due to singularities in the denominator [17]. Interestingly, if separated, the ‘bosonic’ and
‘fermionic’ parts of the determinantal ratio in (13) are much simpler. For the ensemble of
random matrices

√
GU as in theorem 2.1 they were calculated in [18], see also [17]:

〈det(zI −
√

GU)(zI −
√

GU)†〉U = (N + 1)

∫ +∞

0

ds

(1 + s)N+2

N∏
j=1

(s|z|2 + gj ) (14)

and, in the limit ε → 0,

〈det−1[ε2I + (zI −
√

GU)(zI −
√

GU)†]〉U = Rg(z) ln(1/ε2) + O(1) (15)

where Rg(z) is given by the formula on the rhs of equation (7) with

Fi(g) := F
(b)
i (g) = N(N − 1)

|z|2(N−1)
(|z|2 − gi)

N−2
∏

j=1,j �=i

1

gi − gj

.

These formulae yield the averages over the ensemble of random matrices (1), (3) in the same
way as theorem 2.1 implies theorems 2.2 and 2.3:

〈det(zI − A)(zI − A)†〉A = (−1)N(N + 1)

∫ +∞

0

pN(−s|z|2)
(1 + s)N+2

ds (16)

and

〈det−1[ε2I + (zI − A)(zI − A)†]〉A = 〈Rg(z)〉A ln(1/ε2) + O(1)

with

〈Rg(z)〉A = N − 1

|z|2(N−1)

1

hN−1

∫ b

|z|2
(x − |z|2)N−2pN−1(x)w(x) dx. (17)

Equation (16) is an immediate consequence of (14) and the Heine formula (26) and equation
(17) can be obtained by repeating the calculations given in the next section with Fi(g) replaced
by F

(b)
i (g). Since the functions F

(b)
i (g) enjoy the same symmetries (5)–(6) as the Fi(g)’s, the

derivation of (8) from (7) goes unchanged, leading to (17).

4
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3. Proofs

Throughout this section we assume that N � 2. We will use the notation �(g) for the
Vandermonde determinant:

�(g) =
∏

1�i<j�N

(gi − gj ) = det
(
g

N−j

i

)
i,j=1...,N

= det(pN−j (gi))i,j=1...,N . (18)

To prove theorems 2.2 and 2.3 we need the following two lemmas.

Lemma 3.1. The functions Fi(g) add up to zero:

N∑
i=1

Fi(g) = 0. (19)

Proof. Recall Lagrange interpolation: for any polynomial f (x) of degree N − 1 or less

f (x) =
N∑

i=1

f (gi)

N∏
j=1,j �=i

x − gj

gi − gj

.

This identity can be used to verify the following two summation formulae:
N∑

i=1

(gi − |z|2)N−2
N∏

j=1,j �=i

1 + t
|z|2 gj

gi − gj

= − t

|z|2 (1 + t)N−2

and
N∑

i=1

gi(gi − |z|2)N−2
N∏

j=1,j �=i

1 + t
|z|2 gj

gi − gj

= (1 + t)N−2.

On rearranging terms in the square brackets in (4),

(N − t) +
gi

|z|2 (Nt − 1) = N

(
1 +

gi

|z|2 t

)
−

(
gi

|z|2 + t

)
, (20)

and making use of the above summation formulae, one sees that the contribution to
∑

i Fi(g)

corresponding to the first term on the rhs in (20) vanishes for all t and the contribution
corresponding to the second term vanishes after integrating over t. �

Lemma 3.2. Suppose that S(g) is a symmetric function in g1, . . . , gN and such that the
integrals below converge. Then, for any 0 � α < β � ∞,∫ β

α

dg1 · · ·
∫ β

α

dgN S(g)FN(g) = 0. (21)

Proof. By lemma 3.1, FN(g) = −∑N−1
j=1 Fi(g). Hence, in view of (6),∫ β

α

dg1 · · ·
∫ β

α

dgN S(g)FN(g) = −(N − 1)

∫ β

α

dg1 · · ·
∫ β

α

S(g)FN(g),

and (21) follows. �

Proof of theorem 2.2. Consider the random matrix ensemble defined by (1). The density
of eigenvalues ρ(z) (2) averaged over this ensemble can be related to that of theorem 2.1
by changing to the ‘polar’ coordinates in the matrix space. Indeed, recalling the singular
value decomposition, one can write A = V

√
GU where both U and V are unitary with

5
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V being determined modulo multiplication by a diagonal unitary matrix, and G being the
diagonal matrix of the ordered eigenvalues g1 < g2 < · · · < gN of AA†. Ignoring matrices
with repeated gj’s, the correspondence between A and (U, V,G) is one to one, with the
Jacobian being proportional to �2(g) [19]. The matrices A and

√
GUV have the same set

of eigenvalues, and, by the invariance of the Haar measure, the mean eigenvalue density of√
GU does not change when U gets multiplied by V. On changing to the polar coordinates

(U, V,G) one then gets the desired relation

ρ(z) = 1

CN

∫ b

a

dg1

∫ b

g1

dg2 · · ·
∫ b

gN−1

dgN W(g)�2(g) ρg(z)

where

CN =
∫ b

a

dg1

∫ b

g1

dg2 · · ·
∫ b

gN−1

dgN W(g)�2(g) = QN

N !

with QN as in (9).
Now apply theorem 2.1 to the integral and write explicitly

ρ(z) = (N − 1)!

QN

{∫ |z|2

a

dg1

∫ b

|z|2
dg2

∫ b

g2

dg3 · · ·
∫ b

gN−1

dgN W(g)�2(g)

N∑
i=2

Fi(g) + · · ·

+
∫ |z|2

a

dg1

∫ |z|2

g1

dg2 · · ·
∫ |z|2

gN−2

dgN−1

∫ b

|z|2
dgN W(g)�2(g)FN(g)

}
.

On making use of the symmetries of the functions Fi(g), see (5)–(6),

ρ(z) = (N − 1)!

QN

N−1∑
i=1

1

i!(N − 1 − i)!

×
∫ |z|2

a

dg1 · · ·
∫ |z|2

a

dgi

∫ b

|z|2
dgi+1 · · ·

∫ b

|z|2
dgN W(g)�2(g) FN(g). (22)

On the other hand,∫ b

a

dg1 · · ·
∫ b

a

dgN−1

∫ b

|z|2
dgN W(g)�2(g) FN(g)

=
(∫ |z|2

a

+
∫ b

|z|2

)
dg1 · · ·

(∫ |z|2

a

+
∫ b

|z|2

)
dgN−1

∫ b

|z|2
dgN W(g)�2(g) FN(g)

=
N−1∑
i=1

(N − 1)!

i!(N − 1 − i)!

∫ |z|2

a

dg1 · · ·
∫ |z|2

a

dgi

∫ b

|z|2
dgi+1

· · ·
∫ b

|z|2
dgN W(g)�2(g) FN(g). (23)

In the last step, we have used (21) with α = |z|2, β = b and S(g) = W(g)�2(g). Now one
can verify equations (8)–(9) by comparing (22) and (23). �

Remark 1. By lemma 3.2, we also have

ρ(z) = − 1

QN

∫ b

a

dg1 · · ·
∫ b

a

dgN−1

∫ |z|2

a

dgN W(g)�2(g) FN(g), a < |z|2 < b. (24)

This formula is sometimes more convenient in applications.

6
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Next, assume that the weight W(g) is multiplicative, as in equation (3). Then the
normalization constant QN can be expressed in terms of the hj’s (10):

QN = N !
N−1∏
j=0

hj .

This follows, see e.g. [1], from the identity∫ b

a

dx1 w(x1) · · ·
∫ b

a

dxN w(xN) det(pj (xi)) det(pj (xi)) = N ! det

(∫ b

a

pi(x)pj (x)w(x) dx

)
on recalling the Vandermonde determinant (18). The derivation leading from (8) to (12) which
is given below is standard and is based on the identity [20]

1

QN

∫
dx1 w(x1) · · ·

∫
dxN w(xN) �(x1, . . . , xN , y1, . . . , yM)�(x1, . . . , xN)

= det(pN−1+i (yj ))i,j=1,...,M, (25)

which is an extension of the Heine formula, see, e.g. [21],

1

QN

∫ b

a

dx1 w(x1) · · ·
∫ b

a

dxN w(xN)

N∏
j=1

(y − xj )�
2(x1, . . . , xN) = pN(y). (26)

Proof of theorem 2.3. Note that

�2(g1, . . . , gN)

N−1∏
i=1

s + gi

gN − gi

= (−1)N
�(g1, . . . , gN ,−s)�(g1, . . . , gN−1)

gN + s
.

On making the substitution s = |z|2/t in the integral representation (4) for FN(g) and then
applying theorem 2.2, the eigenvalue density function takes the form

ρ(z) = (−1)NN |z|2
πQN

∫ b

a

dg1 · · ·
∫ b

a

dgN−1

∫ b

|z|2
dgN

∫ ∞

0
ds

(gN − |z|2)N−2

(s + |z|2)N+2

N∏
i=1

w(gi)

× �(g1, . . . , gN ,−s)�(g1, . . . , gN−1)

gN + s

[
N(gN + s) −

(
gNs

|z|2 + |z|2
)]

. (27)

Define gN+1 = −s. Then, by (25), the integral over g1, . . . , gN−1 yields∫ b

a

dg1 · · ·
∫ b

a

dgN−1

N−1∏
i=1

w(gi)
�(g1, . . . , gN ,−s)�(g1, . . . , gN−1)

gN + s

= −(N − 1)!

(
N−1∏
n=0

hn

)
KN(gN,−s),

and theorem 2.3 follows. �

Remark 2. By lemma 3.2, we also have an alternative form:

ρ(z) = (−1)N |z|2
∫ |z|2

a

dx w(x)

∫ ∞

0
ds

(x − |z|2)N−2

(s + |z|2)N+2

×
[
N(x + s) −

(
xs

|z|2 + |z|2
)]

KN(x,−s), a < |z|2 < b. (28)

7
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4. Examples

In this section, we give two examples of the calculation of the eigenvalue density with the help
of the formulae obtained in this communication.

Example 1 (Complex Laguerre-type ensemble). Consider complex N ×N matrices with the
probability distribution

P(A) ∝ det(AA†)a e− Tr AA†
dA =

∏
j

ga
j e−gj dA, a � 0.

It is a simple modification of the complex Ginibre ensemble. This is a case when the alternative
way of formulating theorem 2.3 becomes convenient. First, note that

gs

|z|2 + |z|2 = (s + |z|2) − (g − |z|2) +
(g − |z|2)(s + |z|2)

|z|2 .

The monic orthogonal polynomials associated with the weight w(x) = xa e−x , x > 0, are the
generalized Laguerre polynomials La

n(x) scaled appropriately, pn(x) = (−1)nn!La
n(x) [22],

and the Christoffel–Darboux kernel (11) is

KN(x, y) =
N−1∑
n=0

n!


(a + n + 1)
La

n(x)La
n(y).

Using the two integral formulae [23] below,∫ ∞

0

La
n(−s)

(s + |z|2)m ds = 1

(m − 1)!|z|2(m−1)

n∑
i=0

(
n + a

n − i

)
(m − i − 2)!|z|2i , m � n + 2

∫ 1

0
(1 − x)μ−1 e−βxLa

n(βx) = 
(n + a + 1)

n!
(a + 1)

1

μ
2F2(n + a + 1, 1; a + 1, μ + 1;−β),

one can convert (28) into

ρ(z) = 1

πN
e−|z|2

N−1∑
l=0

|z|2(l+a)


(l + 1 + a)
,

recovering Ginibre’s expression [1, 3].

Example 2 (Complex Hermite-type ensemble). In this example, we consider the ensemble
of complex N × N matrices with the probability distribution

P(A) ∝ e− Tr(AA†)2
dA = e− ∑

j g2
j dA. (29)

In this case the weight function is w(x) = e−x2
, x > 0. A general expression for the

associated orthogonal polynomials seems to be unknown; however, applying the Gram–
Schmidt procedure one can easily construct them one by one, e.g.

p0(x) = 1 h0 = √
π/2

p1(x) = x − 1/
√

π h1 = π − 2

4
√

π

p2(x) = x2 +

√
π

2 − π
x − 4 − π

4 − 2π
h2 =

√
π

4

π − 3

π − 2

p3(x) = x3 − 3π − 8

2
√

π(π − 3)
x2 − 3π − 10

2π − 6
x +

5π − 16

4
√

π(π − 3)
h3 = 6π2 − 29π + 32

16
√

π(π − 3)
.

8
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Figure 1. Histogram of the radial part of the eigenvalue distribution of 3 × 3 complex matrices
A distributed as in (29), with sample size 50 000 and bin 0.05. Solid line represents the function
f3(|z|) as derived from (30).

It is then straightforward to apply theorem 2.3 and get the first two density functions

ρ2(z) =
√

π

2 − π

{
(erf(|z|2) − 1)

(
1

2|z|4 − 1

)
+ exp(−|z|4)

(
1

2|z|4 − 1√
π |z|2 − 1

)}
and

ρ3(z) = 4√
π

|z|2
π − 3

{
(erf(|z|2) − 1)

(
−

√
π

6|z|8 − π

6|z|6 +
π

4|z|2 +

√
π

3

)

+ exp(−|z|4)
(

−
√

π

6|z|8 − π − 2

6|z|6 +

√
π

6|z|4 +
π

6|z|2
)}

. (30)

Here erf is the error function: erf(x) = 2π−1/2
∫ x

0 dt e−t2
.

Finally, since the density function of Hermite-type complex random matrices in
example 2 is, to the best of our knowledge, not known in the literature, we compare our formula
with numerical simulations. To this end, we generate 3 × 3 complex matrices according to the
probability distribution (29). We draw a histogram of the radial part of eigenvalues, |z|, of the
matrix A, see figure 1. To compare with the histogram, we use the appropriately normalized
density function f3(|z|) = 2π |z|ρ3(z), which is shown by the solid line. From figure 1, we
observe a very good match between our formula (30) and the results of numerical simulations.
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